程序员最近都爱上了这个网站  程序员们快来瞅瞅吧!  it98k网:it98k.com

本站消息

站长简介/公众号

  出租广告位,需要合作请联系站长

+关注
已关注

分类  

暂无分类

标签  

暂无标签

日期归档  

暂无数据

Performance of zeros function in Numpy

发布于2024-12-08 09:44     阅读(559)     评论(0)     点赞(10)     收藏(2)


I just noticed that the zeros function of numpy has a strange behavior :

%timeit np.zeros((1000, 1000))
1.06 ms ± 29.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

%timeit np.zeros((5000, 5000))
4 µs ± 66 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

On the other hand, ones seems to have a normal behavior. Is anybody know why initializing a small numpy array with the zeros function takes more time than for a large array ?

(Python 3.5, numpy 1.11)


解决方案


This looks like calloc hitting a threshold where it makes an OS request for zeroed memory and doesn't need to initialize it manually. Looking through the source code, numpy.zeros eventually delegates to calloc to acquire a zeroed memory block, and if you compare to numpy.empty, which doesn't perform initialization:

In [15]: %timeit np.zeros((5000, 5000))
The slowest run took 12.65 times longer than the fastest. This could mean that a
n intermediate result is being cached.
100000 loops, best of 3: 10 µs per loop

In [16]: %timeit np.empty((5000, 5000))
The slowest run took 5.05 times longer than the fastest. This could mean that an
 intermediate result is being cached.
100000 loops, best of 3: 10.3 µs per loop

you can see that np.zeros has no initialization overhead for the 5000x5000 array.

In fact, the OS isn't even "really" allocating that memory until you try to access it. A request for terabytes of array succeeds on a machine without terabytes to spare:

In [23]: x = np.zeros(2**40)  # No MemoryError!


所属网站分类: 技术文章 > 问答

作者:黑洞官方问答小能手

链接:https://www.pythonheidong.com/blog/article/2046412/1f2cec359e04e81fd5d9/

来源:python黑洞网

任何形式的转载都请注明出处,如有侵权 一经发现 必将追究其法律责任

10 0
收藏该文
已收藏

评论内容:(最多支持255个字符)