发布于2020-03-08 22:22 阅读(1541) 评论(0) 点赞(24) 收藏(3)
Matplotlib数据可视化的应用实例
分析 :2000至2017年各季度国民生产总值数据
npy文件——numpy专用的二进制格式
np.load()和np.save()是读写磁盘数组数据的两个重要函数。使用时,数组会以未压缩的原始二进制格式保存在扩展名为.npy的文件中。
分析国民生产总值:
# -- coding:utf-8 --
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示,否则可能无法显示中文或者是各种字符错乱
plt.rcParams['axes.unicode_minus'] = False
data = np.load("../data/国民经济核算季度数据.npz", allow_pickle=True) # 加载数据 必须加上allow_pickle=True
print(data) # 这时的data是数据对象,
print(data['columns'])
print(data['values'])
name = data['columns']
values = data['values']
plt.figure(figsize=(10, 10))
plt.scatter(values[:, 0], values[:, 2], marker='o') # 画散点图
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.ylim((0, 225000))
plt.xticks(range(0, 70, 4), values[range(0, 70, 4), 1], rotation=45) # 此时取得值都是第一季度的
plt.title('2000-2017年季度生产总值散点图')
plt.savefig('../images/2000-2017年季度生产总值散点图.png') # 图片要先保存再显示
plt.show() # 在当前设备显示图片
分析 :第一二三产业的的国民生产总值
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示,否则可能无法显示中文或者是各种字符错乱
plt.rcParams['axes.unicode_minus'] = False
data = np.load("../data/国民经济核算季度数据.npz", allow_pickle=True) # 加载数据 必须加上
values = data['values']
plt.figure(figsize=(10, 10))
# 绘制的第一二三产业的增加值
plt.scatter(values[:, 0], values[:, 3], marker='o', c='red')
plt.scatter(values[:, 0], values[:, 4], marker='*', c='blue')
plt.scatter(values[:, 0], values[:, 5], marker='v', c='yellow')
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.xticks(range(0, 70, 4), values[range(0, 70, 4), 1], rotation=45) # 此时取得值都是第一季度的
plt.title('2000-2017年季度生产总值散点图')
plt.legend(['第一产业', '第二产业', '第三产业'])
plt.savefig('../images/2000-2017年季度生产总值散点图.png') # 注意要先保存再show
plt.show()
分析 :利用折线图分析第一季度
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示,否则可能无法显示中文或者是各种字符错乱
plt.rcParams['axes.unicode_minus'] = False
data = np.load("../data/国民经济核算季度数据.npz", allow_pickle=True) # 加载数据 必须加上
values = data['values']
plt.figure(figsize=(10, 10))
plt.plot(values[:, 0], values[:, 2], color='k', linestyle='-')
plt.xlabel('年份')
plt.ylabel('生产总值(亿元)')
plt.xticks(range(0, 70, 4), values[range(0, 70, 4), 1], rotation=45) # 此时取得值都是第一季度的
plt.title('2000-2017年季度生产总值折线图')
plt.savefig('../images/2000-2017年季度生产总值散点图.png') # 注意要先保存再show
plt.show()
分析 :利用直方图分析第一季度国民生产总值
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示,否则可能无法显示中文或者是各种字符错乱
plt.rcParams['axes.unicode_minus'] = False
data = np.load("../data/国民经济核算季度数据.npz", allow_pickle=True) # 加载数据 必须加上
values = data['values']
plt.figure(figsize=(10, 10))
l = ['r', 'g', 'b']
m = ['o', '*', 'D']
for i in enumerate([0, 1, 2]):
plt.bar(range(3), values[-1, 3:6], width=0.5, color=l)
plt.xlabel('行业', fontsize=20)
plt.ylabel('生产总值(亿元)', fontsize=20)
plt.xticks(range(3), ['第一产业', '第二产业', '第三产业'])
plt.title('2017年第一季度国民生产总值直方图')
plt.savefig('../images/2000-2017年季度生产总值脂肪图.png')
plt.show()
分析 :利用饼图分析2017年第一季度各产业国民生产总值
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示,否则可能无法显示中文或者是各种字符错乱
plt.rcParams['axes.unicode_minus'] = False
data = np.load("../data/国民经济核算季度数据.npz", allow_pickle=True) # 加载数据 必须加上
values = data['values']
plt.figure(figsize=(6, 6))
label = ['第一产业', '第二产业', '第三产业']
explode = [0.01, 0.05, 0.03] # 设置指定项距离圆心的距离为N 倍的半径
plt.pie(values[-1, 3:6], explode=explode, labels=label, autopct='%.2f %%')
plt.title('2017年第一季度各产业国民生产总值饼图')
plt.savefig('../images/2000-2017年季度生产总值饼图.png')
plt.show()
分析 :利用箱线图分析2017年第一季度各产业国民生产总值
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示,否则可能无法显示中文或者是各种字符错乱
plt.rcParams['axes.unicode_minus'] = False
data = np.load("../data/国民经济核算季度数据.npz", allow_pickle=True) # 加载数据 必须加上
values = data['values']
plt.figure(figsize=(6, 6))
label = ['第一产业', '第二产业', '第三产业']
gdp = (list(values[:, 3]), list(values[:, 4]), list(values[:, 5]))
plt.boxplot(gdp, notch=True, labels=label, meanline=True) # 第一个参数是数据,第二个参数是是否带有缺口,第三个参数是标签,第四个参数是是否带有均值线
plt.title('2017年第一季度各产业国民生产总值箱线图')
plt.savefig('../images/2017年第一季度各产业国民生产总值箱线图.png')
plt.show()
END
作者:32738ew
链接:https://www.pythonheidong.com/blog/article/248628/4f4f9d50a759eba9e26d/
来源:python黑洞网
任何形式的转载都请注明出处,如有侵权 一经发现 必将追究其法律责任
昵称:
评论内容:(最多支持255个字符)
---无人问津也好,技不如人也罢,你都要试着安静下来,去做自己该做的事,而不是让内心的烦躁、焦虑,坏掉你本来就不多的热情和定力
Copyright © 2018-2021 python黑洞网 All Rights Reserved 版权所有,并保留所有权利。 京ICP备18063182号-1
投诉与举报,广告合作请联系vgs_info@163.com或QQ3083709327
免责声明:网站文章均由用户上传,仅供读者学习交流使用,禁止用做商业用途。若文章涉及色情,反动,侵权等违法信息,请向我们举报,一经核实我们会立即删除!