程序员最近都爱上了这个网站  程序员们快来瞅瞅吧!  it98k网:it98k.com

本站消息

站长简介/公众号

  出租广告位,需要合作请联系站长

+关注
已关注

分类  

暂无分类

标签  

暂无标签

日期归档  

2024-11(2)

TensorFlow笔记(11) GoolgeNet

发布于2019-08-20 11:52     阅读(1671)     评论(0)     点赞(28)     收藏(4)


1. Inception块

根据 深度学习笔记(30) Inception网络 可以了解到

在这里插入图片描述
可以利用Inception块构建经典网络InceptionNet,也就是GoolgeNet
在这里插入图片描述
那么,以CIFAR-10 数据集的分类为例,采用GoolgeNet模型来解决问题


2. 数据读取

CIFAR-10 数据集的分类是机器学习中一个公开的基准测试问题
其任务是对一组32x32RGB的图像进行分类,这些图像涵盖了10个类别:
飞机, 汽车, 鸟, 猫, 鹿, 狗, 青蛙, 马, 船以及卡车
在这里插入图片描述
利用网上的 CIFAR-10 数据集 获取数据集压缩文件:
在这里插入图片描述
这里使用的是python版本 CIFAR-10 python version

  • 载入数据集合:

    import tensorflow as tf
    import matplotlib.pyplot as plt
    import numpy as np
    import os
    import urllib.request
    import tarfile
    import pickle as p
    from sklearn.preprocessing import OneHotEncoder
    
    # 下载 cifar10
    url = 'https://www.cs.toronto.edu/-kriz/cifar-10-python.tar.gz'
    filepath = '../data/cifar-10-python.tar.gz'
    if not os.path.isfile(filepath):
        result = urllib.request.urlretrieve(url, filepath)
        print('downloaded', result)
    else:
        print('Data file already exists.')
    
    # 解压 cifar10
    if not os.path.exists("../data/cifar-10-batches-py"):
        tfile = tarfile.open("../data/cifar-10-python.tar.gz", 'r:gz')
        result = tfile.extractall("../data/")
        print('Extracted to ./../data/cifar-10-batches-py/')
    else:
        print('Directory already exists.')
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

    下载并解压数据集
    当然可以自己在 CIFAR-10 数据集 网站上下载在工程的data文件夹下,然后解压
    在这里插入图片描述

  • 加载数据集

    def load_CIFAR_batch(filename):
        """oad single batch of cifar"""
        with open(filename, 'rb')as f:
            # 一个样本由标签和图像数据组成
            # <1 xlabel><3072 xpixel> (3072-32x32x3)
            data_dict = p.load(f, encoding='bytes')
            images = data_dict[b'data']
            labels = data_dict[b'labels']
            # 把原始数据结构调整为: BCWH
            images = images.reshape(10000, 3, 32, 32)
            # tensorflow处理图像数据的结构: BWHC
            # #把通道数据C移动到最后一个维度
            images = images.transpose(0, 2, 3, 1)
            labels = np.array(labels)
            return images, labels
    
    
    def load_CIFAR_data(data_dir):
        """load CIFAR data"""
        images_train = []
        labels_train = []
        for i in range(5):
            f = os.path.join(data_dir, 'data_batch_{0}'.format(i + 1))
            print('loading', f)
            # 调用loadCIFARbatch(获得批量的图像及其对应的标签
            image_batch, label_batch = load_CIFAR_batch(f)
            images_train.append(image_batch)
            labels_train.append(label_batch)
            Xtrain = np.concatenate(images_train)
            Ytrain = np.concatenate(labels_train)
            del image_batch, label_batch
        Xtest, Ytest = load_CIFAR_batch(os.path.join(data_dir, 'test_batch'))
        print('finished loadding CIFAR-10 data')
        # 返回训练集的图象和标签,测试集的图像和标签
        return Xtrain, Ytrain, Xtest, Ytest
    
    
    data_dir = '../data/cifar-10-batches-py/'
    Xtrain, Ytrain, Xtest, Ytest = load_CIFAR_data(data_dir)
    
    # loading ../data/cifar-10-batches-py/data_batch_1
    # loading ../data/cifar-10-batches-py/data_batch_2
    # loading ../data/cifar-10-batches-py/data_batch_3
    # loading ../data/cifar-10-batches-py/data_batch_4
    # loading ../data/cifar-10-batches-py/data_batch_5
    # finished ../loadding CIFAR-10 data
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
  • 查看数据集数量

    print('training data shape:', Xtrain.shape)
    print('training labels shape:', Ytrain.shape)
    print('test data shape:', Xtest.shape)
    print('test labels shape:', Ytest.shape)
    
    # training data shape: (50000, 32, 32, 3)
    # training labels shape: (50000,)
    # test data shape: (10000, 32, 32, 3)
    # test labels shape: (10000,)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    32x32 RGB3通道尺寸图片,训练图片50000张,测试图片10000张,

  • 定义标签字典
    对应类别信息查看:http://www.cs.toronto.edu/~kriz/cifar.html

    label_dict = {0: "airplane", 1: "automobile", 2: "bird", 3: "cat", 4: "deer",
                  5: "dog", 6: "frog", 7: "horse", 8: "ship", 9: "truck"}
    
    • 1
    • 2
  • 查看第11张图片并查看对应的label

    imshow_num = 10
    plt.imshow(Xtrain[imshow_num])
    plt.show()
    print("Xtrain[{0}] label:".format(imshow_num), label_dict[Ytrain[imshow_num]])
    
    # Xtrain[10] label: deer
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    在这里插入图片描述
    虽然模模糊糊,但还可以猜出来是十个类别中的鹿

  • 图片进行数字标准化并对比数据

    Xtrain_mean0 = np.mean(Xtrain.astype('float32')[:, :, :, 0])
    Xtrain_mean1 = np.mean(Xtrain.astype('float32')[:, :, :, 1])
    Xtrain_mean2 = np.mean(Xtrain.astype('float32')[:, :, :, 2])
    Xtrain_mean = [Xtrain_mean0, Xtrain_mean1, Xtrain_mean2]
    
    Xtrain_std0 = np.std(Xtrain.astype('float32')[:, :, :, 0])
    Xtrain_std1 = np.std(Xtrain.astype('float32')[:, :, :, 1])
    Xtrain_std2 = np.std(Xtrain.astype('float32')[:, :, :, 2])
    Xtrain_std = [Xtrain_std0, Xtrain_std1, Xtrain_std2]
    
    
    def data_norm(x, x_mean, x_std):
        x_norm = x.astype('float32')
        x_norm[:, :, :, 0] = (x_norm[:, :, :, 0] - x_mean[0]) / x_std[0]
        x_norm[:, :, :, 1] = (x_norm[:, :, :, 1] - x_mean[1]) / x_std[1]
        x_norm[:, :, :, 2] = (x_norm[:, :, :, 2] - x_mean[2]) / x_std[2]
        return x_norm
    
    
    Xtrain_norm = data_norm(Xtrain, Xtrain_mean, Xtrain_std)
    Xtest_norm = data_norm(Xtest, Xtrain_mean, Xtrain_std)
    
    # 对比图像数据
    print("Xtrain[0][0][0] data:", Xtrain[0][0][0])
    print("Xtrain_norm[0][0][0] data:", Xtrain_norm[0][0][0])
    
    # Xtrain[0][0][0] data: [59 62 63]
    # Xtrain_normalize[0][0][0] data: [-1.0526042 -0.9816644 -0.7625441]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    现在标准化过的数据Xtrain_norm的对应的32x32x3个像素均值为0,标准差为1
    测试集的标准化设置的均值和方差需以训练集为准
    不然训练的模型对测试图片作用就没那么好了

  • 标签数据处理并对比数据

    encoder = OneHotEncoder(sparse=False, categories='auto')
    yy = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]]
    encoder.fit(yy)
    Ytrain_reshape = Ytrain.reshape(-1, 1)
    Ytrain_onehot = encoder.transform(Ytrain_reshape)
    Ytest_reshape = Ytest.reshape(-1, 1)
    Ytest_onehot = encoder.transform(Ytest_reshape)
    
    print("Ytrain[10] data:", Ytrain[10])
    print("Ytrain_onehot[10] data:", Ytrain_onehot[10])
    
    # Ytrain[10] data: 4
    # Ytrain_onehot[10] data: [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    现在的标签数据Ytrain_onehot,Ytest_onehot 已采用独热编码形式


3. 构建模型

  • 定义训练数据的占位符, x是32x32x3个像素点的特征值, y是10分类的标签值:

    x = tf.placeholder(tf.float32, [None, 32, 32, 3], name="X")
    y = tf.placeholder(tf.float32, [None, 10], name="Y")
    
    • 1
    • 2

    shape中 None 表示行的数量未知
    在实际训练时决定一次代入多少行样本

  • 展开图片 x
    为了使用卷积层,需把x变成一个4d向量
    其第1维对应样本数, -1表示任意数量
    其第2、第3维对应图片的宽、高,最后一维代表图片的颜色通道数

    x_image = tf.reshape(x, [-1, 32, 32, 3])
    
    • 1
  • 定义权重初始化函数:

    • 定义权重W 初始化函数 :从标准差0.1的截断正态分布中输出随机值
      标准正态分布生生成的数据在负无穷到正无穷
      但是截断式正态分布生成的数据在均值-2倍的标准差,均值+2倍的标准差这个范围内
      def weight_variable(shape):
      	initial = tf.truncated_normal(shape, stddev=0.1)
      	return tf.Variable(initial)
      
      • 1
      • 2
      • 3
    • 定义权重b 初始化函数 :数值为0.1
      def bias_variable(shape):
      	initial = tf.constant(0.1, shape=shape)
      	return tf.Variable(initial)
      
      • 1
      • 2
      • 3
    • 定义 卷积 函数:
      # 定义1步长的 same卷积
      def conv2d(x, W):
          return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
      
      
      # 定义1步长的 valid卷积
      def conv2d_v(x, W):
          return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='VALID')
      
      
      # 定义2步长的 same卷积
      def conv2d_2(x, W):
          return tf.nn.conv2d(x, W, strides=[1, 2, 2, 1], padding='SAME')
      
      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      TensorFow的卷积函数:tf.nn.conv2d()用法可在TensorFlow笔记(8) LeNet-5卷积神经网络中查看
    • 定义 池化 函数:
      # 定义步长为1 大小3x3的 max pooling
      def max_pool_3x3(x):
          return tf.nn.max_pool(x, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME')
      
      
      # 定义步长为2 大小3x3的 max pooling
      def max_pool_3x3_2(x):
          return tf.nn.max_pool(x, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')
      
      
      # 定义步长为3 大小5x5的 avg pooling
      def avg_pool_5x5(x):
          return tf.nn.avg_pool(x, ksize=[1, 5, 5, 1], strides=[1, 3, 3, 1], padding='VALID')
      
      
      # 定义步长为1 大小7x7的 avg pooling
      def avg_pool_7x7(x):
          return tf.nn.avg_pool(x, ksize=[1, 7, 7, 1], strides=[1, 1, 1, 1], padding='VALID')
      
      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      TensorFow的池化函数:平均池化tf.nn.avg_pool()与最大池化tf.nn.max_pool()用法相似
      同样可在TensorFlow笔记(8) LeNet-5卷积神经网络中查看
  • 配置inception块
    在这里插入图片描述

    def inception(x, channel_in, filters_num):
        # 第一分支 conv 1x1+1s
        with tf.variable_scope("branch1"):
            branch1_w_conv1 = weight_variable([1, 1, channel_in, filters_num[0]])
            branch1_b_conv1 = bias_variable([filters_num[0]])
            branch1_h_conv1 = tf.nn.relu(conv2d(x, branch1_w_conv1) + branch1_b_conv1)
        # 第二分支 conv 1x1+1s > conv 3x3+1s
        with tf.variable_scope("branch2"):
            branch2_w_conv1 = weight_variable([1, 1, channel_in, filters_num[1]])
            branch2_b_conv1 = bias_variable([filters_num[1]])
            branch2_h_conv1 = tf.nn.relu(conv2d(x, branch2_w_conv1) + branch2_b_conv1)
            branch2_w_conv2 = weight_variable([3, 3, filters_num[1], filters_num[2]])
            branch2_b_conv2 = bias_variable([filters_num[2]])
            branch2_h_conv2 = tf.nn.relu(conv2d(branch2_h_conv1, branch2_w_conv2) + branch2_b_conv2)
        # 第三分支 conv 1x1+1s > conv 5x5+1s
        with tf.variable_scope("branch3"):
            branch3_w_conv1 = weight_variable([1, 1, channel_in, filters_num[3]])
            branch3_b_conv1 = bias_variable([filters_num[3]])
            branch3_h_conv1 = tf.nn.relu(conv2d(x, branch3_w_conv1) + branch3_b_conv1)
            branch3_w_conv2 = weight_variable([5, 5, filters_num[3], filters_num[4]])
            branch3_b_conv2 = bias_variable([filters_num[4]])
            branch3_h_conv2 = tf.nn.relu(conv2d(branch3_h_conv1, branch3_w_conv2) + branch3_b_conv2)
        # 第四分支 max_pool 3x3+1s > conv 1x1+1s
        with tf.variable_scope("branch4"):
            branch4_pool1 = max_pool_3x3(x)
            branch4_w_conv1 = weight_variable([1, 1, channel_in, filters_num[5]])
            branch4_b_conv1 = bias_variable([filters_num[5]])
            branch4_h_conv1 = tf.nn.relu(conv2d(branch4_pool1, branch4_w_conv1) + branch4_b_conv1)
        # 输出叠加
        with tf.variable_scope("depth_concat"):
            concat = tf.concat([branch1_h_conv1, branch2_h_conv2, branch3_h_conv2, branch4_h_conv1], axis=3)
        return concat
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • 第一二层:压缩图片
    第一二层为什么混着来呢,因为其实作用都是调整和预处理图片
    以确保第一次进入inception块时为28x28x192的尺寸
    在这里插入图片描述
    而cifar10图片尺寸较小,为配合后续的计算,调整一些原有结构压缩成28x28x192

    # 第一层
    w_conv1 = weight_variable([3, 3, 3, 64])
    b_conv1 = bias_variable([64])
    h_conv1 = tf.nn.relu(conv2d_v(x_image, w_conv1) + b_conv1)
    h_pool1 = max_pool_3x3(h_conv1)
    hh_lrn1 = tf.nn.lrn(h_pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
    # 第二层
    w_conv2 = weight_variable([1, 1, 64, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(hh_lrn1, w_conv2) + b_conv2)
    w_conv3 = weight_variable([3, 3, 64, 192])
    b_conv3 = bias_variable([192])
    h_conv3 = tf.nn.relu(conv2d_v(h_conv2, w_conv3) + b_conv3)
    h_lrn2 = tf.nn.lrn(h_conv3, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
    h_pool2 = max_pool_3x3(h_lrn2)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    TensorFow的局部响应归一化函数:tf.nn.lrn()的使用可在 TensorFlow笔记(9) ResNet 中查看

  • 第三阶段 inception3
    在这里插入图片描述
    第三阶段的过程:Previous Activation > inception 3a > inception 3b > max_pool 3x3+2s

    # inception 3a:conv 1x1 64 + conv 1x1 96 > conv 3x3 128 + conv 1x1 16 > conv 3x3 32 + max_pool 3x3 > conv 3x3 32
    filters_num_3a = [64, 96, 128, 16, 32, 32]  # 设置inception 3a的通道数
    inception_3a = inception(h_pool2, 192, filters_num_3a)
    
    # inception 3b:conv 1x1 128 + conv 1x1 128 > conv 3x3 192 + conv 1x1 32 > conv 3x3 96 + max_pool 3x3 > conv 3x3 64
    filters_num_3b = [128, 128, 192, 32, 96, 64]
    inception_3b = inception(inception_3a, 256, filters_num_3b)
    
    h_pool3 = max_pool_3x3_2(inception_3b)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • 第四阶段 inception4
    在这里插入图片描述
    第四阶段的过程:Previous Activation > inception 4a > inception 4b > inception 4c+(softmax0) > inception 4d > inception 4e+(softmax1) > max_pool 3x3+2s

    # inception 4a
    filters_num_4a = [192, 96, 208, 16, 48, 64]
    inception_4a = inception(h_pool3, 480, filters_num_4a)
    # inception 4b
    filters_num_4b = [160, 112, 224, 24, 64, 64]
    inception_4b = inception(inception_4a, 512, filters_num_4b)
    # softmax0
    h_pool4 = avg_pool_5x5(inception_4a)
    # > conv 1x1 128
    w_conv4 = weight_variable([1, 1, 512, 128])
    b_conv4 = bias_variable([128])
    h_conv4 = tf.nn.relu(conv2d(h_pool4, w_conv4) + b_conv4)
    h_flat1 = tf.reshape(h_conv4, shape=[-1, 4 * 4 * 128])  # 重新展开
    # > fc 1x1 1024
    W_fc1 = weight_variable([4 * 4 * 128, 1024])
    b_fc1 = bias_variable([1024])
    h_fc1 = tf.nn.relu(tf.matmul(h_flat1, W_fc1) + b_fc1)
    # > fc 1x1 10
    dropout_rate0 = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1, rate=dropout_rate0)
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    h_fc2 = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    # > softmax0
    pred0 = tf.nn.softmax(h_fc2)
    # inception 4c
    filters_num_4c = [128, 128, 256, 24, 64, 64]
    inception_4c = inception(inception_4b, 512, filters_num_4c)
    # inception 4d
    filters_num_4d = [112, 144, 288, 32, 64, 64]
    inception_4d = inception(inception_4c, 512, filters_num_4d)
    # inception 4e
    filters_num_4e = [256, 160, 320, 32, 128, 128]
    inception_4e = inception(inception_4d, 528, filters_num_4e)
    h_pool5 = max_pool_3x3_2(inception_4e)
    # softmax1
    h_pool6 = avg_pool_5x5(inception_4d)
    # > conv 1x1 128
    w_conv5 = weight_variable([1, 1, 528, 128])
    b_conv5 = bias_variable([128])
    h_conv5 = tf.nn.relu(conv2d(h_pool6, w_conv5) + b_conv5)
    h_flat2 = tf.reshape(h_conv5, shape=[-1, 4 * 4 * 128])  # 重新展开
    # > fc 1x1 1024
    W_fc3 = weight_variable([4 * 4 * 128, 1024])
    b_fc3 = bias_variable([1024])
    h_fc3 = tf.nn.relu(tf.matmul(h_flat2, W_fc3) + b_fc3)
    # > fc 1x1 10
    dropout_rate1 = tf.placeholder("float")
    h_fc3_drop = tf.nn.dropout(h_fc1, rate=dropout_rate1)
    W_fc4 = weight_variable([1024, 10])
    b_fc4 = bias_variable([10])
    h_fc4 = tf.matmul(h_fc3_drop, W_fc4) + b_fc4
    # > softmax1
    pred1 = tf.nn.softmax(h_fc4)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54

    TensorFow的dropout 函数:tf.nn.dropout()的使用可在TensorFlow笔记(9) ResNet中查看

  • 第五阶段 最终输出
    在这里插入图片描述
    第五阶段的过程:inception 5a > inception 5b > avg_pool_7x7 > softmax2

    # inception 5a
    filters_num_5a = [256, 160, 320, 32, 128, 128]
    inception_5a = inception(h_pool5, 832, filters_num_5a)
    # inception 5b
    filters_num_5b = [384, 192, 384, 48, 128, 128]
    inception_5b = inception(inception_5a, 832, filters_num_5b)
    
    # avg_pool_7x7
    h_pool7 = avg_pool_7x7(inception_5b)
    h_flat3 = tf.reshape(h_pool7, shape=[-1, 1 * 1 * 1024])  # 重新展开
    
    # softmax2
    dropout_rate2 = tf.placeholder("float")
    h_pool7_drop = tf.nn.dropout(h_flat3, rate=dropout_rate2)
    W_fc5 = weight_variable([1024, 10])
    b_fc5 = bias_variable([10])
    h_fc5 = tf.matmul(h_pool7_drop, W_fc5) + b_fc2
    pred2 = tf.nn.softmax(h_fc5)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
  • 整合softmax

    forward = h_fc5 + h_fc4 * 0.3 + h_fc2 * 0.3
    pred = pred2 + pred1 * 0.3 + pred0 * 0.3
    
    • 1
    • 2
  • 定义损失函数
    使用TensoFlow提供的结合Softmax的交叉熵损失函数定义方法:softmax_cross_entropy_with_logits_v2
    交叉熵损失函数其实就是逻辑回归损失函数的前半部 ylog(pred)- y * log(pred)
    忽略了 (1y)log(1pred)-(1 - y) * log(1 - pred)

    with tf.name_scope("LossFunction"):
    	loss_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=forward, labels=y))
    
    • 1
    • 2

4. 训练模型

  • 设置超参数:

    train_epochs = 20  # 迭代次数
    learning_rate = 0.001  # 学习率
    
    • 1
    • 2
  • 定义Adam优化器,设置学习率和优化目标损失最小化:

    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss_function)
    
    • 1
  • 定义预测类别匹配情况

    correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    
    • 1

    tf.equal(A, B) :对比这两个矩阵或者向量的相等的元素,相等返回 True,相反返回 False
    tf.argmax(input,axis) :根据axis取值的不同返回每行或者每列最大值的索引,axis 表示维度,0:第一维度(行),1:第二维度(列),-1:最后一个维度
    其实,这里的最终求得的索引,恰好就表示图片上的数字

  • 定义准确率,将布尔值转化成浮点数,再求平均值

    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    • 1
  • 读取模型与创建会话:

    # 定义保存模型
    saver = tf.train.Saver()
    save_dir = "../save_path/GoogleNet/"
    
    # 定义保存模型编号
    save_step = 0
    
    # 恢复保存模型
    ckpt_dir = tf.train.latest_checkpoint(save_dir)
    sess = tf.Session()  # 建立会话
    if ckpt_dir != None:
        saver.restore(sess, ckpt_dir)
        print("Finished loading", ckpt_dir)
        save_step = int(input("Set the load save step:"))
    else:
        # 变量初始化
        sess.run(tf.initialize_all_variables())
        print("Finished initialize")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

    关于如何保存模型,可在TensorFlow笔记(10) CheckPoint中查看
    如果是读取模型继续训练时,例如最近保存的是序号12的模型

    # Finished loading ../save_path/GoogleNet/model-12
    Set the load save step:
    
    • 1
    • 2

    则输入现在加载的模型序号12,然后回车,之后的训练保存的模型就从13开始

    Set the load save step:12
    
    • 1
  • 设置批次大小和数量:
    如果在处理完整个5万个训练图片的训练集之后才进行一次训练
    这样的处理速度相对缓慢
    如果在处理完整个5万个训练图片的训练集之前先让梯度下降法处理一部分
    算法速度会更快
    可以把训练集分割为小一点的子集训练
    如128张训练图片,然后就进行梯度下降法处理
    这种梯度下降法处理方法称之为Mini-batch 梯度下降
    具体可参考深度学习笔记(9) 优化算法(一)

    # 每个批次的大小,每次放入的大小,每次放入 128张图片 以矩阵的方式
    batch_size = 128
    
    # 计算一共有多少个批次,数量整除大小训练出有多少批次
    n_batch = len(Ytrain_onehot) // batch_size
    
    # 定义显示训练过程中验证的间隔批量次数
    display_test_num = n_batch // 10
    
    # 定义显示训练过程.的间隔批量次数
    display_train_num = display_test_num // 10
    
    # 定义批次训练数据的占位符
    x_batch = tf.placeholder(tf.float32, [None, 32, 32, 3], name="X_batch")
    # 随机上下翻转批次图片
    Xtrain_batch_up = tf.image.random_flip_up_down(x_batch)
    # 随机左右翻转批次图片
    Xtrain_batch_lf = tf.image.random_flip_left_right(Xtrain_batch_up)
    # 对角旋转批次图片
    # Xtrain_batch_tp = tf.image.transpose_image(x_batch)
    
    
    # 定义训练集批次函数
    def get_train_batch(num, size):
        Xtrain_batch = Xtrain_norm_shuffle[num * size:(num + 1) * size]
        Ytrain_batch = Ytrain_onehot_shuffle[num * size:(num + 1) * size]
        # 随机翻转数据
        with tf.Session() as sess_batch:
            Xtrain_batch = sess_batch.run(Xtrain_batch_lf, feed_dict={x_batch: Xtrain_batch})
            return Xtrain_batch, Ytrain_batch
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
  • 批次迭代训练,其中 dropout 随机丢弃的概率都为0.4,显示迭代过程中的信息:

    for epoch in range(train_epochs):
        # 打乱训练数据集
        index = [i for i in range(len(Ytrain_onehot))]
        random.shuffle(index)
        Xtrain_norm_shuffle = Xtrain_norm[index]
        Ytrain_onehot_shuffle = Ytrain_onehot[index]
    
        # 批次迭代训练
        for batch in range(0, n_batch):
            xs, ys = get_train_batch(batch, batch_size)
            sess.run(optimizer, feed_dict={x: xs, y: ys, dropout_rate0: 0.4, dropout_rate1: 0.4, dropout_rate2: 0.4})
    
            if (batch + 1) % display_train_num == 0:
                print(".", end="")
    
            if (batch + 1) % display_test_num == 0:
                # 保存模型
                save_step += 1
                save_path = saver.save(sess, save_dir + "model", global_step=save_step)
                print("Complete save ", save_path)
                # 批次训练完成之后,使用测试数据计算误差与准确率
                loss, acc = sess.run([loss_function, accuracy], feed_dict={x: Xtest_norm[0:512],
                                                                           y: Ytest_onehot[0:512],
                                                                           dropout_rate0: 0,
                                                                           dropout_rate1: 0,
                                                                           dropout_rate2: 0})
    	learning_rate = 0.95 * learning_rate # 学习率衰减
    	
    # ..........Complete save  D:/save_path/GoogleNet/model-1
    # TrainEpoch= 01 TrainBatch= 0039 Loss= 1.958486080 TestAccuracy= 0.1973
    # ...
    # ..........Complete save  D:/save_path/GoogleNet/model-10
    # TrainEpoch= 01 TrainBatch= 0390 Loss= 1.628237653 TestAccuracy= 0.4268
    # ...
    # ..........Complete save  D:/save_path/GoogleNet/model-200
    # TrainEpoch= 20 TrainBatch= 0390 Loss= 0.510145028 TestAccuracy= 0.8166
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36

    数据训练量比较大,而设备有限,为了保护设备而断断续续的训练
    过一遍数据,抽取测试集前512张图片分类的准确率到达42.68%
    最后一共历遍训练集20次,抽取测试集前512张图片分类的准确率到达 81.66%


5. 评估模型

测试集上评估模型预测的准确率

test_total_batch = int(len(Xtest_norm) / batch_size)
test_acc_sum = 0.0
for i in range(test_total_batch):
    test_image_batch = Xtest_norm[i * batch_size:(i + 1) * batch_size]
    test_label_batch = Ytest_onehot[i * batch_size:(i + 1) * batch_size]
    test_batch_acc = sess.run(accuracy, feed_dict={x: test_image_batch,
                                                   y: test_label_batch,
                                                   dropout_rate0: 0,
                                                   dropout_rate1: 0,
                                                   dropout_rate2: 0})
    test_acc_sum += test_batch_acc
test_acc = float(test_acc_sum / test_total_batch)
print("Test accuracy:{:.6f}".format(test_acc))

# Test accuracy:0.807292
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

测试集的准确率达到80%


6. 模型预测

  • 查看预测结果

    # 转换第201-210张测试图片pred预测结果独热编码格式为数字0-9
    prediction_result = sess.run(tf.argmax(pred, 1), feed_dict={x: Xtest_normalize[200:210],
                                                            	dropout_rate0: 0,
                                                            	dropout_rate1: 0,
                                                            	dropout_rate2: 0})
    
    # 查看第201-210张测试图片的预测结果
    print(prediction_result)
    
    # [5 1 8 7 1 3 0 5 7 9]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    但是这样没办法知道,预测的到底是不是正确的

  • 预测结果可视化比对
    定义可视化函数:

    def plot_images_labels_prediction(images, labels, prediction, idx, num=10):
        fig = plt.gcf()
        fig.set_size_inches(12, 6)
        if num > 10:
            num = 10
        for i in range(0, num):
            ax = plt.subplot(2, 5, 1 + i)
            ax.imshow(images[idx], cmap="binary")
            title = str(i) + ',' + label_dict[labels[idx]]
            if len(prediction) > 0:
                title += '=>' + label_dict[prediction[i]]
            ax.set_title(title, fontsize=10)
            idx += 1
        plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
  • 可视化第201-210张测试图片的预测结果对比

    plot_images_labels_prediction(Xtest, Ytest, rediction_result, 200, 10)
    
    • 1

    在这里插入图片描述

    这次的预测都判断正确,还行。


[1] python的代码地址:
https://github.com/JoveH-H/TensorFlow/blob/master/py/8.GoogleNet.py
[2] jupyter notebook的代码地址:
https://github.com/JoveH-H/TensorFlow/blob/master/ipynb/8.GoolgeNet.ipynb
[3] MNIST 数据集 t10k-images-idx3-ubyte.gz
http://www.cs.toronto.edu/~kriz/cifar.html


相关推荐:

深度学习笔记(30) Inception网络
深度学习笔记(26) 卷积神经网络
TensorFlow笔记(10) CheckPoint
TensorFlow笔记(9) ResNet
TensorFlow笔记(8) LeNet-5卷积神经网络


谢谢!



所属网站分类: 技术文章 > 博客

作者:hghgh

链接:https://www.pythonheidong.com/blog/article/49129/24e251953ce58db81c8d/

来源:python黑洞网

任何形式的转载都请注明出处,如有侵权 一经发现 必将追究其法律责任

28 0
收藏该文
已收藏

评论内容:(最多支持255个字符)