发布于2019-08-05 18:28 阅读(834) 评论(0) 点赞(1) 收藏(2)
知识预热:
python内置类型的时间复杂度
单向链表
python数据结构内置方法的时间复杂度
nums = [0, 1, 2, 7, 11, 15]
target = 9
def chek(nums, target):
dict1 = {}
for i, ele in enumerate(nums):
if (target-ele) in dict1:
return dict1[target-ele], i
else:
dict1[ele] = i
print(chek(nums, target))
下面方法和上面方法一样,但是内存稍稍省下0.1M
class Solution(object):
def twoSum(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
dict = {}
for i in range(len(nums)):
if dict.get(target-nums[i]) == None:
dict[nums[i]] = i
else:
return dict[target-nums[i]], i
方法二,不用维护一个字典的开销
class Solution(object):
def twoSum(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
for i in range(len(nums)):
if (target-nums[i]) in nums[i+1:]:
# 这里返回加i+1是因为nums[i+1:]计数又是从0开始了
return i, nums[i+1:].index(target-nums[i])+i+1
感觉方法二的if ele in list的时间复杂度就是O(n),所以不对,这道题应该是需要维护哈希表。
2. Add Two Numbers
题2,Input: (2 -> 4 -> 3) + (5 -> 6 -> 4)
Output: 7 -> 0 -> 8
Explanation: 342 + 465 = 807.
# Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, x):
# self.val = x
# self.next = None
# 基本思路是两个单项列表先取数字,然后求和,再放入向列表中。还记得单项列表的构建方法吧
class Solution(object):
def addTwoNumbers(self, l1, l2):
"""
:type l1: ListNode
:type l2: ListNode
:rtype: ListNode
"""
cur = l1
sum = 0
idx = 0
while cur:
sum += cur.val*(10**idx)
cur = cur.next
idx += 1
cur = l2
idx = 0
while cur:
sum += cur.val*(10**idx)
cur = cur.next
idx += 1
if sum == 0:
return ListNode(0)
else:
self.head = ListNode(sum%10)
cur = self.head
sum //= 10
while sum > 0:
cur.next = ListNode(sum%10)
cur = cur.next
sum //= 10
return self.head
#基本思路是维护left和right两个指针,max_num,
#一个集合,先移动右指针,不在集合中则加入集合里,
#否则移动左指针,并右指针=左指针。
#用集合是因为集合的查询速度是o(1)!!
class Solution(object):
def lengthOfLongestSubstring(self, s):
"""
:type s: str
:rtype: int
"""
l = r = 0; set1= set()
max = 0
while r < len(s) and r < len(s):
if not s[r] in set1:
set1.add(s[r])
r += 1
if max < len(set1):
max = len(set1)
else:
l += 1
r = l
set1 = set()
return max
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
nums1.extend(nums2)
nums1.sort()
if not len(nums1)%2:
n = len(nums1)//2
return (nums1[n-1]+nums1[n])/2
else:
return nums1[len(nums1)//2]
class Solution:
def longestPalindrome(self, s: str) -> str:
if len(s) == 1:
return s
b = "$#"
for i in s:
b += i
b += "#"
maxr = 0;idx = -1
for i in range(3,len(b)):
r = 1
while (i+r)<len(b) and (i-r)>=0:
if b[i-r] == b[i+r]:
r += 1
else:
break
(maxr,idx) = (r,i) if maxr<=r else (maxr,idx)
# 起点, 最大长度
# (idx-maxr)//2, axr-1
return s[(idx-maxr)//2: (idx-maxr)//2 + maxr-1]
class Solution:
def convert(self, s: str, numRows: int) -> str:
a = ""
gap = (numRows-2)*2+2
for i in range(numRows):
# 头情况
if i == 0:
n = 0
while n*gap < len(s):
a += s[n*gap]
n += 1
# 中间的情况
if i>0 and i<numRows-1:
n = 1
a += s[i]
while n*gap+i < len(s) or n*gap-i < len(s):
if n*gap-i < len(s):
a += s[n*gap-i]
if n*gap+i < len(s):
a += s[n*gap+i]
n += 1
# 尾情况
if i == numRows-1:
bg = numRows-1
n = 0
while n*gap+bg < len(s):
a += s[n*gap+bg]
n += 1
return a
上面方法耗时超限制,改进思路,按照遍历放入的思想来实现。代码,核心思想是控制向下走或者向上走,然后放入对应的行。
s = "PAYPALISHIRING"
class Solution:
def convert(self, s: str, numRows: int) -> str:
if numRows == 1:
return s
s1 = [''] * numRows
dir = 1
countn = 0
for i in range(len(s)):
if countn == 0:
s1[countn] += s[i]
dir = 1
countn += dir
elif countn == numRows-1:
s1[countn] += s[i]
dir = -1
countn += dir
else:
s1[countn] += s[i]
countn += dir
return "".join(s1)
solu = Solution()
s1 = solu.convert(s, 3)
print(s)
print(s1)
改进后通过,内存消耗控制很好。运行速度到112ms。
更近一步:
思考用列表[] .append()的方法可能会提高计算速度,
class Solution:
def convert(self, s: str, numRows: int) -> str:
if numRows == 1:
return s
s1 = []
for i in range(numRows):
s1.append([])
dir = 1
countn = 0
for i in range(len(s)):
if countn == 0:
s1[countn].append(s[i])
dir = 1
countn += dir
elif countn == numRows-1:
s1[countn].append(s[i])
dir = -1
countn += dir
else:
s1[countn].append(s[i])
countn += dir
return "".join(j for i in s1 for j in i)
结论:果然[].append(“str_”)的效率比“”+str_效率高,列表扩展效率比字符串扩展效率高。运行耗时提高到100ms
下面在上面代码基础上进行精简,减少一点内存消耗。
class Solution:
def convert(self, s: str, numRows: int) -> str:
if numRows == 1:
return s
s1 = []
for i in range(numRows):
s1.append([])
dir = 1
countn = 0
for i in range(len(s)):
s1[countn].append(s[i])
countn += dir
if countn == 0:
dir = 1
if countn == numRows-1:
dir = -1
return "".join(j for i in s1 for j in i)
class Solution:
def reverse(self, x: int) -> int:
x = int(str(x)[::-1]) if x>=0 else -int(str(x)[1:][::-1])
if x>-2**31 and x<(2**31)-1:
return x
else:
return 0
#这道题应该仔细看看题目要求,实现并不难,坑很多。
#还是正则表达式来的最痛快,规则实现需要考虑的细节太多。
#代码不是我的思路,[来自](https://blog.csdn.net/coder_orz/article/details/52053932)
class Solution(object):
def myAtoi(self, str):
"""
:type str: str
:rtype: int
"""
str = str.strip()
try:
res = re.search('(^[\+\-]?\d+)', str).group()
res = int(res)
res = res if res <= 2147483647 else 2147483647
res = res if res >= -2147483648 else -2147483648
except:
res = 0
return res
正则表达式忘了不少了, 拾起来。
9. 回文数
这道题进阶版本是不用str,可提速。
class Solution:
def isPalindrome(self, x: int) -> bool:
return x>=0 and str(x) == str(x)[::-1]
进阶版本如下,思想是把数字倒过来。
class Solution:
def isPalindrome(self, x: int) -> bool:
if x<0:return False
elif x == 0:return True
else:
temp = 0
t_x = x
while x>0:
temp = 10*temp + x%10
x //= 10
return temp == t_x
虽然内存没省,但运算速度提升了。
class Solution:
def isMatch(self, s, p):
if not s:return False
res = re.match(p, s)
if res == None:
return False
else:
return res.group() == s
预留地
找到了思路 https://www.cnblogs.com/Jessey-Ge/p/10993447.html
class Solution(object):
def maxArea(self, height):
"""
:type height: List[int]
:rtype: int
"""
l = 0; r = len(height)-1
max_vol = 0
while l < r:
v= min(height[r], height[l])*(r-l)
max_vol = v if max_vol<v else max_vol
if height[r] >= height[l]:
l += 1
else:
r -= 1
return max_vol
class Solution(object):
def intToRoman(self, num):
"""
:type num: int
:rtype: str
"""
dic = { "M":1000, "CM":900, "D":500, "CD":400, "C":100, "XC":90, "L":50,"XL":40, "X":10, "IX":9, "V":5,"IV":4 ,"I":1 }
ele = ""
for key,item in dic.items():
while num >= item:
num -= item
ele += key
return ele
class Solution:
def romanToInt(self, s):
# dic = {"M": 1000, "CM": 900, "D": 500, "CD": 400, "C": 100, "XC": 90, "L": 50, "XL": 40, "X": 10, "IX": 9, "V": 5, "IV": 4, "I": 1}
dic = {"M": 1000, "D": 500, "C": 100, "L": 50, "X": 10, "V": 5, "I": 1}
num = 0
for i in range(len(s)-1):
temp = dic[s[i]] if dic[s[i]]>=dic[s[i+1]] else -1*dic[s[i]]
num +=temp
num += dic[s[-1]]
return num
solu = Solution()
print(solu.romanToInt("XC"))
class Solution(object):
def longestCommonPrefix(self, strs):
"""
:type strs: List[str]
:rtype: str
"""
shotstr = min(strs, key=len)
for i, letter in enumerate(shotstr):
for other in strs:
if other[i] == letter:
pass
else:
return shotstr[:i]
return shotstr
6.mergeTwoLlists
链表结构。leetcode链接
# Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution(object):
def mergeTwoLists(self, l1, l2):
"""
:type l1: ListNode
:type l2: ListNode
:rtype: ListNode
"""
if l1 is None or l2 is None:
return l1 or l2
if l1.val > l2.val:
l2.next = self.mergeTwoLists(l2.next, l1)
return l2
else:
l1.next = self.mergeTwoLists(l1.next, l2)
return l1
7.去除相同元素
Remove Duplicates from Sorted Array
这道题返回不正确,应该是返回不重复的列表
nums = [0,1,2,3,3,3,3,4,9]
class Solution(object):
def removeDuplicates(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums:
return 0
lenResult = 0
index = 0
for i in range(1, len(nums)):
if nums[i] != nums[index]:
lenResult += 1
index = i
return lenResult+1
print(Solution().removeDuplicates(nums=nums))
作者:听爸爸的话
链接:https://www.pythonheidong.com/blog/article/6259/4e99089a23885297bb44/
来源:python黑洞网
任何形式的转载都请注明出处,如有侵权 一经发现 必将追究其法律责任
昵称:
评论内容:(最多支持255个字符)
---无人问津也好,技不如人也罢,你都要试着安静下来,去做自己该做的事,而不是让内心的烦躁、焦虑,坏掉你本来就不多的热情和定力
Copyright © 2018-2021 python黑洞网 All Rights Reserved 版权所有,并保留所有权利。 京ICP备18063182号-1
投诉与举报,广告合作请联系vgs_info@163.com或QQ3083709327
免责声明:网站文章均由用户上传,仅供读者学习交流使用,禁止用做商业用途。若文章涉及色情,反动,侵权等违法信息,请向我们举报,一经核实我们会立即删除!