程序员最近都爱上了这个网站  程序员们快来瞅瞅吧!  it98k网:it98k.com

本站消息

站长简介/公众号

  出租广告位,需要合作请联系站长

+关注
已关注

分类  

暂无分类

标签  

暂无标签

日期归档  

暂无数据

python — 线程

发布于2019-08-06 11:07     阅读(999)     评论(0)     点赞(1)     收藏(1)


1.线程基础知识

1.1 进程与线程的区别

  • 进程:

    • 创建进程 时间开销大
    • 销毁进程 时间开销大
    • 进程之间切换 时间开销大
  • 线程:

    • 线程是进程中的一部分(不能脱离进程存在),每一个进程中至少有一个线程。

    • 开销:

      线程的创建,也需要一些开销(一个存储局部变量(临时变量)的结构,记录状态)

      线程的创建、销毁、切换开销远远小于进程——开销小

进程是计算机中最小的资源分配单位(进程是负责圈资源)

线程是计算机中能被CPU调度的最小单位(线程是负责执行具体代码的)

线程是由 操作系统 调度,由操作系统负责切换的。

python中的线程比较特殊,所以进程也有可能被用到

注意:一般不建议开起多个进程,但一个进程可以开起多个线程,来减小开销。

特点:

  • 进程 :数据隔离 开销大 同时执行几段代码
  • 线程 :数据共享 开销小 同时执行几段代码

1.2 线程的理论

cpython解释器 — 不能实现多线程利用多核

python中垃圾回收机制 gc :引用计数 + 分代回收

专门有一条线程来完成垃圾回收,对每一个在程序中的变量统计引用计数

锁 :GIL 全局解释器锁

  • 保证了整个python程序中,只能有一个线程被CPU执行

只能有一个线程被CPU执行原因:

  • cpython解释器中特殊的垃圾回收机制

GIL锁导致了线程不能并行,但可以并发,所以使用多线程并不影响高io型的操作,只会对高计算型的程序有效率上的影响。

遇到高计算可以采用的方式:

  • 多进程 + 多线程
  • 分布式

cpython / pypy(pypython) 有垃圾回收机制,只能有一个线程被CPU执行,所以有全局解释器锁

jpython / iron python 没有垃圾回收机制,可以有多个线程被CPU执行,所以没有全局解释器锁

web框架 几乎都是多线程

总结:什么是GIL?

  • 全局解释器锁
  • 由Cpython解释器提供的
  • 导致了一个进程中多个线程同一时刻只能有一个线程访问CPU

2 Thread 类

multiprocessing 是完全仿照这threading的类写的

创建线程有两种方式:面向函数、面向对象

线程中的几个方法:

2.1 启动线程 start

不需要写if __name__ = '__main__':

1.使用面向函数的方式启动线程

# 开启一个子线程
import os
import time
from threading import Thread
def func():
    print('start son thread')
    time.sleep(1)
    print('end son thread',os.getpid())

Thread(target=func).start()
print('start',os.getpid())
time.sleep(0.5)
print('end',os.getpid())


# 开启多个子线程
def func(i):
    print('start son thread',i)
    time.sleep(1)
    print('end son thread',i,os.getpid())

for i in range(10):
    Thread(target=func,args=(i,)).start()
print('main')

2.使用面向对象的方式启动线程

class MyThread(Thread):
    def __init__(self,i):
        self.i = i
        super().__init__()
    def run(self):
        print('start',self.i,self.ident)
        time.sleep(1)
        print('end',self.i)

for i in range(10):
    t = MyThread(i)
    t.start()
    print(t.ident)

t.ident 线程的id

2.2 结束进程 join

主线程什么时候结束?

  • 主线程等待所有子线程结束之后才结束
  • 主线程如果结束了,主进程也就结束了

join方法 阻塞 直到子线程执行结束

def func(i):
    print('start son thread',i)
    time.sleep(1)
    print('end son thread',i,os.getpid())
t_l = []
for i in range(10):
    t = Thread(target=func,args=(i,))
    t.start()
    t_l.append(t)
for t in t_l:t.join()
print('子线程执行完毕')

注意:

  • terminate 结束进程
  • 在线程中不能从主线程结束一个子线程

2.3 守护线程

t.daemon = True

守护线程一直等到所有的非守护线程都结束之后才结束

除了守护了主线程的代码之外也会守护子线程

非守护线程不结束,主线程也不结束;主线程结束了,主进程也结束。

结束顺序 :非守护线程结束 -->主线程结束-->主进程结束--> 守护线程也结束

import time
from threading import Thread
def son1():
    while True:
        time.sleep(0.5)
        print('in son1')
def son2():
    for i in range(5):
        time.sleep(1)
        print('in son2')
t =Thread(target=son1)
t.daemon = True
t.start()
Thread(target=son2).start()
time.sleep(3)

2.4 threading模块的函数

线程里的一些其他方法:

current_thread 在哪个线程中被调用,就返回当前线程的对象

活着的线程,包括主线程:

  • enumerate 返回当前活着的线程的对象列表
  • active_count 返回当前或者的线程的个数
from threading import current_thread,enumerate,active_count
def func(i):
    t = current_thread()
    print('start son thread',i,t.ident)
    time.sleep(1)
    print('end son thread',i,os.getpid())

t = Thread(target=func,args=(1,))
t.start()
print(t.ident)
print(current_thread().ident)   # 水性杨花 在哪一个线程里,current_thread()得到的就是这个当前线程的信息
print(enumerate())
print(active_count())   # =====len(enumerate())

2.5 测试

1.进程和线程的效率都差,但线程的开启、关闭、切换效率比进程的更高。

def func(a,b):
    c = a+b
import time
from multiprocessing import Process
from threading import Thread
if __name__ == '__main__':
    start = time.time()
    p_l = []
    for  i in range(500):
        p = Process(target=func,args=(i,i*2))
        p.start()
        p_l.append(p)
    for p in p_l:p.join()
    print('process :',time.time() - start)

    start = time.time()
    p_l = []
    for i in range(500):
        p = Thread(target=func, args=(i, i * 2))
        p.start()
        p_l.append(p)
    for p in p_l: p.join()
    print('thread :',time.time() - start)

# process : 11.76159143447876
# thread : 0.12466692924499512

2.线程的数据共享的效果

from threading import Thread
n = 100
def func():
    global n    # 不要在子线程里随便修改全局变量
    n-=1
t_l = []
for i in range(100):
    t = Thread(target=func)
    t_l.append(t)
    t.start()
for t in t_l:t.join()
print(n)

注意: 不要在子线程里随便修改全局变量

3 锁

线程中是不是会产生数据不安全?

即便是线程,即便有GIL,也会出现数据不安全的问题。不安全问题存在于以下几种场景:

  • 1.操作的是全局变量
  • 2.做以下操作:
    • += -= *= /+ 先计算再赋值才容易出现数据不安全的问题
    • 包括 lst[0] += 1 dic['key']-=1
  • 3.多个线程对同一个文件进行写操作
a = 0
def func():
    global a
    a += 1

import dis
dis.dis(func)


a = 0
def add_f():
    global a
    for i in range(200000):
        a += 1

def sub_f():
    global a
    for i in range(200000):
        a -= 1

from threading import Thread

t1 = Thread(target=add_f)
t1.start()
t2 = Thread(target=sub_f)
t2.start()
t1.join()
t2.join()
print(a)
a = 0
def func():
    global a
    a -= 1
import dis
dis.dis(func)

加锁会影响程序的执行效率,但是保证了数据的安全。

a = 0
def add_f(lock):
    global a
    for i in range(200000):
        with lock:
            a += 1

def sub_f(lock):
    global a
    for i in range(200000):
        with lock:
            a -= 1

from threading import Thread,Lock
lock = Lock()
t1 = Thread(target=add_f,args=(lock,))
t1.start()
t2 = Thread(target=sub_f,args=(lock,))
t2.start()
t1.join()
t2.join()
print(a)

线程的锁分为:递归锁 、互斥锁

3.1 互斥锁

互斥锁:在同一个线程中,同一把锁不能连续acquire多次,开销小,产生死锁的几率大。

同一把锁acquire一次就要release一次

from threading import Lock
lock = Lock()
lock.acquire()
print('*'*20)
lock.release()
lock.acquire()
print('-'*20)
lock.release()

两把锁可以同时acquire,如

from threading import Lock
lock1 = Lock()
lock2 = Lock()
lock1.acquire()
print('*'*20)
lock2.acquire()
print('-'*20)
lock1.release()
lock2.release()

3.2 递归锁

递归锁:在一个线程中,同一把锁可以连续多次acquire不会死锁,但acquire多少次就需要release多少次,开销大,一把锁永远不死锁。

from threading import RLock
rlock = RLock()
rlock.acquire()
print('*'*20)
rlock.acquire()
print('-'*20)
rlock.acquire()
print('*'*20)

优点:在同一个线程中多次acquire也不会发生阻塞

缺点:占用了更多资源

3.3 单例模式(多线程)

import time
from threading import Lock
class A:
    __instance = None
    lock = Lock()
    def __new__(cls, *args, **kwargs):
        with cls.lock:
            if not cls.__instance:
                time.sleep(0.1)
                cls.__instance = super().__new__(cls)
        return cls.__instance
    def __init__(self,name,age):
        self.name = name
        self.age = age

def func():
    a = A('alex', 84)
    print(a)

from threading import Thread
for i in range(10):
    t = Thread(target=func)
    t.start()

3.4 死锁现象

<1.> 死锁现象

在某一些线程中,出现陷入阻塞并且永远无法结束阻塞的情况就是死锁现象。

<2.> 死锁现象是怎么发生的?

  • 1.有多把锁(一把以上)
  • 2.多把锁交替使用
  • 3.互斥锁在一个线程中连续acquire
import time
from threading import Thread,Lock
noodle_lock = Lock()
fork_lock = Lock()
def eat1(name,noodle_lock,fork_lock):
    noodle_lock.acquire()
    print('%s抢到面了'%name)
    fork_lock.acquire()
    print('%s抢到叉子了' % name)
    print('%s吃了一口面'%name)
    time.sleep(0.1)
    fork_lock.release()
    print('%s放下叉子了' % name)
    noodle_lock.release()
    print('%s放下面了' % name)

def eat2(name,noodle_lock,fork_lock):
    fork_lock.acquire()
    print('%s抢到叉子了' % name)
    noodle_lock.acquire()
    print('%s抢到面了'%name)
    print('%s吃了一口面'%name)
    time.sleep(0.1)
    noodle_lock.release()
    print('%s放下面了' % name)
    fork_lock.release()
    print('%s放下叉子了' % name)

lst = ['alex','wusir','taibai','yuan']
Thread(target=eat1,args=(lst[0],noodle_lock,fork_lock)).start()
Thread(target=eat2,args=(lst[1],noodle_lock,fork_lock)).start()
Thread(target=eat1,args=(lst[2],noodle_lock,fork_lock)).start()
Thread(target=eat2,args=(lst[3],noodle_lock,fork_lock)).start()

<3.> 如何解决死锁现象?

  • 1.递归锁 —— 将多把互斥锁变成了一把递归锁

    递归锁本质:只有一把锁

    优点:快速解决问题

    缺点:效率差

    ***递归锁也会发生死锁现象,多把锁交替使用的时候

  • 2.优化代码逻辑

    优点:

    • 可以使用互斥锁解决问题
    • 效率相对好

    缺点:

    • 解决问题的效率相对低(解决问题慢)
# 递归锁解决死锁问题
import time
from threading import RLock,Thread
# noodle_lock = RLock()
# fork_lock = RLock()     # 错误写法
noodle_lock = fork_lock = RLock()
print(noodle_lock,fork_lock)
def eat1(name,noodle_lock,fork_lock):
    noodle_lock.acquire()
    print('%s抢到面了'%name)
    fork_lock.acquire()
    print('%s抢到叉子了' % name)
    print('%s吃了一口面'%name)
    time.sleep(0.1)
    fork_lock.release()
    print('%s放下叉子了' % name)
    noodle_lock.release()
    print('%s放下面了' % name)

def eat2(name,noodle_lock,fork_lock):
    fork_lock.acquire()
    print('%s抢到叉子了' % name)
    noodle_lock.acquire()
    print('%s抢到面了'%name)
    print('%s吃了一口面'%name)
    time.sleep(0.1)
    noodle_lock.release()
    print('%s放下面了' % name)
    fork_lock.release()
    print('%s放下叉子了' % name)

lst = ['alex','wusir','taibai','yuan']
Thread(target=eat1,args=(lst[0],noodle_lock,fork_lock)).start()
Thread(target=eat2,args=(lst[1],noodle_lock,fork_lock)).start()
Thread(target=eat1,args=(lst[2],noodle_lock,fork_lock)).start()
Thread(target=eat2,args=(lst[3],noodle_lock,fork_lock)).start()
# 互斥锁解决死锁问题
import time
from threading import Lock,Thread
lock = Lock()
def eat1(name,noodle_lock,fork_lock):
    lock.acquire()
    print('%s抢到面了'%name)
    print('%s抢到叉子了' % name)
    print('%s吃了一口面'%name)
    time.sleep(0.1)
    print('%s放下叉子了' % name)
    print('%s放下面了' % name)
    lock.release()

def eat2(name,noodle_lock,fork_lock):
    lock.acquire()
    print('%s抢到叉子了' % name)
    print('%s抢到面了'%name)
    print('%s吃了一口面'%name)
    time.sleep(0.1)
    print('%s放下面了' % name)
    print('%s放下叉子了' % name)
    lock.release()

lst = ['alex','wusir','taibai','yuan']
Thread(target=eat1,args=(lst[0],noodle_lock,fork_lock)).start()
Thread(target=eat2,args=(lst[1],noodle_lock,fork_lock)).start()
Thread(target=eat1,args=(lst[2],noodle_lock,fork_lock)).start()
Thread(target=eat2,args=(lst[3],noodle_lock,fork_lock)).start()

<4.> 如何避免死锁?

在一个线程中只有一把锁,并且每一次acquire之后都要release

4 队列

线程之间的通信——线程是安全的

1.先进先出队列

写一个server,所有的用户的请求放在队列里——先来先服务的思想

import queue
from queue import Queue  # 先进先出队列
q = Queue(3)
q.put(0)
q.put(1)
q.put(2)
print('22222')

print(q.get())
print(q.get())
print(q.get())

2.后进先出队列

与算法相关的(如:递归)

from queue import LifoQueue  # 后进先出队列
# last in first out 栈
lfq = LifoQueue(4)
lfq.put(1)
lfq.put(3)
lfq.put(2)
print(lfq.get())
print(lfq.get())
print(lfq.get())

3.优先级队列

优先级队列的好处:

  • (可以做)自动的排序

  • 抢票的用户级别

    如:vip用户在1000-10000之间,普通用户是10001-……,只要是在VIP之间的数就会比普通用户的数优先服务

  • 告警级别

from queue import PriorityQueue
pq = PriorityQueue()
pq.put((10,'alex'))
pq.put((6,'wusir'))
pq.put((20,'yuan'))
print(pq.get())
print(pq.get())
print(pq.get())


所属网站分类: 技术文章 > 博客

作者:小姐姐抱抱我

链接:https://www.pythonheidong.com/blog/article/8152/d38f18ad035209ef58d6/

来源:python黑洞网

任何形式的转载都请注明出处,如有侵权 一经发现 必将追究其法律责任

1 0
收藏该文
已收藏

评论内容:(最多支持255个字符)